精英家教网 > 高中数学 > 题目详情
(2012•马鞍山二模)(1-x2)(2x+1)5的展开式中x4的系数是
40
40
分析:写出二项展开式的通项公式,求出(2x+1)5的x2,x4的系数,即可求得结论.
解答:解:(2x+1)5的展开式的通项公式为:Tr+1=
C
r
5
(2x)5-r

令5-r=4,即r=1,则T1+1=
C
1
5
(2x)4=80x4
;令5-r=2,即r=3,则T3+1=
C
3
5
(2x)2=40x2

∴(1-x2)(2x+1)5的展开式中x4的系数为1×80+(-1)×40=40
故答案为:40
点评:本题考查二项式定理,考查二项式展开式中通项的求法,及用通项公式求一系列的问题,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设同时满足条件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值,并证明此时{
1
bn
}
为“嘉文”数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= b=
不赞成 c= d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)己知在锐角△ABC中,角A,B,C所对的边分别为a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大小;
(II)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设x1,x2是关于x的方程x2+mx+
1+m2
=0的两个不相等的实数根,那么过两点A(x1x12)B(x2x22)的直线与圆x2+y2=2的位置关系是(  )

查看答案和解析>>

同步练习册答案