精英家教网 > 高中数学 > 题目详情

已知等比数列各项都是正数,.
(1)求数列的通项公式;
(2)求证:.

(1).(2)见解析.

解析试题分析:(1)设的公比为,由已知可得
两式相除得:,即可得到.
(2)由(1)知
首先得到.
利用“错位相减法”求得
即得证.
试题解析:(1)设的公比为,由已知
两式相除得:,故.  6分
(2)由(1)知
          9分
,则,两式相减得:

,即.          13分
考点:等比数列的通项公式及求和公式,指数运算,“错位相减法”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求证:{Sn+1}是等比数列;
(2)求数列{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:函数是等比源函数;
(3)判断函数是否为等比源函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:
(1)证明数列是等比数列;
(2)设表示向量间的夹角,若,记的前项和为,求
(3)设上不恒为零的函数,且对任意的,都有,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列前n项和为,首项为,且等差数列。
(1)求数列的通项公式;
(2)若,设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,a2a3=32,a5=32.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前n项和记为,,点在直线上,n∈N*.
(1)求证:数列是等比数列,并求数列的通项公式
(2)设,是数列的前n项和,求的值.

查看答案和解析>>

同步练习册答案