精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系内,已知点及线段,在线段上任取一点,线段长度的最小值称为“点到线段的距离”,记为.

(1)设点,线段 ,求

(2)设 ,线段,线段,若点满足,求关于的函数解析式,并写出该函数的值域.

【答案】(1)(2),其值域为

【解析】试题分析:

(1)由题意结合的定义有

(2)由题意分类讨论可得:当时, ;当时, ;当时, 结合分段函数的解析式可得函数的值域为.

试题解析:

1)在线段任取一点

(当且仅当时取等号)

所以

2)数形结合可知:

时,

时,点的轨迹是以点B为焦点,直线为准线开口向上的抛物线的一段,从而

时,点的轨迹是线段BD的中垂线的一部分射线,从而

综上: ,其值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3

1)求数列{an}的通项公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,某城市的市民收入逐年增长,表1是该城市某银行连续五年的储蓄存款额(年底余额):

表1

年份x

2011

2012

2013

2014

2015

储蓄存款额y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将表1的数据进行了处理,令tx-2 010,zy-5,得到表2:

表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(1)z关于t的线性回归方程是________y关于x的线性回归方程是________

(2)用所求回归方程预测到2020年年底,该银行储蓄存款额可达________千亿元.

(附:线性回归方程x,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题分)

如图, 所在的平面互相垂直,且

)求证:

)求直线与面所成角的大小的正弦值.

)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为12 000元,生产1车皮乙种肥料产生的利润为7 000元,那么可产生的最大利润是(  )

A. 29 000元 B. 31 000元 C. 38 000元 D. 45 000元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中是自然对数的底数, .

1)讨论函数的单调性;

(2)当函数有两个零点时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12己知函数fx=

1求曲线y=fx在点0f0))处的切线方程;

2求证:当x01时,fx>2

3设实数k使得fx>kx01恒成立,求k的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,且,设动点满足

)求动点的轨迹的方程

若直线与曲线交于两点求三角形面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】园林管理处拟在公园某区域规划建设一半径为米圆心角为(弧度)的扇形景观水池,其中为扇形的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过万元,水池造价为每平方米元,步道造价为每米元.

(1)当分别为多少时,可使广场面积最大,并求出最大值;

(2)若要求步道长为米,则可设计出水池最大面积是多少.

查看答案和解析>>

同步练习册答案