精英家教网 > 高中数学 > 题目详情
(2013•广元二模)已知集合M={x|(x+1)(x+2)<0},N={x||x|<1},则(  )
分析:根据二次不等式的解法求出集合M,利用绝对值不等式求得集合N,即可得到集合M与集合N的关系.
解答:解:∵|x|<1,∴-1<x<1,
∴N={x|-1<x<1},
∵(x+1)(x+2)<0,∴-2<x<-1,
即M={x|-2<x<-1},
∴M∩N=∅.
故选D.
点评:本题考查集合之间的关系,以及绝对值不等式的解法和绝对值不等式的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广元二模)已知各项均为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an使得
aman
=4a1,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)已知函数f(x)=
1
3
x3-x2+ax+b
的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;
(2)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.
①求实数m的最大值;
②当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)函数f(x)=
1-2log2x
的定义域为
(0,
2
]
(0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)如果实数x、y满足
x-y+1≥0
y+1≥0
x+y+1≤0
,则z=x+2y
的最小值是
-4
-4

查看答案和解析>>

同步练习册答案