精英家教网 > 高中数学 > 题目详情

【题目】某地区现有一个直角梯形水产养殖区ABCDABC=90°ABCDAB=800mBC=1600mCD=4000m,在点P处有一灯塔(如图),且点PBCCD的距离都是1200m,现拟将养殖区ACD分成两块,经过灯塔P增加一道分隔网EF,在AEF内试验养殖一种新的水产品,当AEF的面积最小时,对原有水产品养殖的影响最小.设AE=d

1)若PEF的中点,求d的值;

2)求对原有水产品养殖的影响最小时的d的值,并求AEF面积的最小值.

【答案】1480;2)对原有水产品养殖的影响最小时,d=480AEF面积的最小值为192000m2

【解析】

1)建立平面坐标系,求出直线ADAC的方程,根据PEF的中点列方程得出E点坐标,从而可计算d

2)根据基本不等式得出AEAF的最小值,进而求出AEF的面积最小值.

解:(1)以A为坐标原点,AB所在直线为x轴,建立如图所示的平面直角坐标系,

C8001600),B8000),P-400400),D-32001600).

AC所在直线方程为y=2xAD所在直线方程为y=-x

E-2mm),Fn2n),m0,>0

PEF的中点,,解得

E-960480),

d=|AE|==480

2EF经过点PkPE=kPF

=,化简得80m+240n=mn

由基本不等式得:mn=80m+240n≥160

mn≥76800,当且仅当m=3n=480时等号成立.

kACkAD=-1ACAD

SAEF=AEAF=mn=mn76800=192000

此时E-960480),d=AE=480

故对原有水产品养殖的影响最小时,d=480AEF面积的最小值为192000m2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,若,求的取值范围;

2)若定义在上的奇函数满足,且当,求上的解析式;

3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,.

1)证明:

2)求平面与平面所成锐二面角的余弦值;

3)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+bx+ca0),且f1

1)求证:函数fx)有两个不同的零点;

2)设x1x2是函数fx)的两个不同的零点,求|x1x2|的取值范围;

3)求证:函数fx)在区间(02)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程有两个不等的实数根,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,已知,且2an+1=an+1nN*).

1)求证:数列{an-1}是等比数列;

2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线分别交轴、轴的正半轴于两点,为坐标原点.

1)若直线方程为),且,求的值;

2)若直线经过点,设的斜率为为线段的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,分别为ABC所对的边,且

(1)确定角C的大小;

(2)若c,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个长方体的容器中,里面装有少量的水,现在将容器绕着其底部的一条棱倾斜.

1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?

2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?

3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?

查看答案和解析>>

同步练习册答案