精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)已知为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.

【答案】(1) (2)6

【解析】试题分析:(1)由椭圆定义得到动圆圆心的轨迹的方程;(2)的方程为,联立可得,通过根与系数的关系表示弦长进而得到四边形面积的表达式,利用换元法及均值不等式求最值即可.

试题解析:

(1)设动圆的半径为,由题意知

从而有,故轨迹为以为焦点,长轴长为4的椭圆,

并去 除点,从而轨迹的方程为.

(2)设的方程为,联立

消去,设点

到直线的距离为,点到直线的距离为

从而四边形的面积

,有,函数上单调递增,

,故,即四边形面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,圆与圆的公切线的条数的可能取值共有(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是集合 的一个含有个元素的子集.

(Ⅰ)当时,

(i)写出方程的解

(ii)若方程至少有三组不同的解,写出的所有可能取值.

(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为)的有穷正整数数列,记),即中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.

1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列

2)设数列为数列的“创新数列”,满足),求证: );

3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)证明:上单调递增.

2)设,函数,如果总存在,对任意都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆.

求椭圆的方程;

已知为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:的焦点在轴上,AE的左顶点,斜率为k k > 0)的直线交EAM两点,点NE上,MA⊥NA.

)当t=4时,求△AMN的面积;

)当时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

恒成立,求的取值范围;

已知是函数的两个零点,且,求证:.

查看答案和解析>>

同步练习册答案