精英家教网 > 高中数学 > 题目详情

设数列的前项和为,
(1)若,求;           
(2)若,求的前6项和;
(3)若,证明是等差数列.

(1);(2);(3)只需证

解析试题分析:(1)    
         

是公比为2的等比数列,且      3分
  即   
   
            5分
(2),          

是首项为,公比为的等比数列     8分
       10分
(3)        

         
是等差数列              14分
考点:等差数列的性质;数列通项公式的求法;数列前n项和的求法;等比数列的前n项和公式。
点评:我们要熟练掌握求数列通项公式的方法。公式法是求数列通项公式的基本方法之一,常用的公式有:等差数列的通项公式、等比数列的通项公式及公式。此题的第一问求数列的通项公式就是用公式,用此公式要注意讨论的情况。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为数列的前项和,对任意的,都有(为正常数).
(1)求证:数列是等比数列;
(2)数列满足求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项的和记为Sn.如果
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,是等比数列,且
(Ⅰ)求数列的通项公式
(Ⅱ)数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{ }满足 =3,   =  。设,证明数列{}是等差数列并求通项 。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;
(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是一个等差数列,是其前项和,且.
(1)求的通项
(2)求数列的前10项的和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知是等差数列,其中[来]
(1)求的通项; 
(2)数列从哪一项开始小于0;
(3)求值。]

查看答案和解析>>

同步练习册答案