精英家教网 > 高中数学 > 题目详情
3.已知函数y=loga(x+c)(a>0且a≠1,a,c为常数)的图象如图,则下列结论正确的是(  )
A.a>0,c>1B.a>1,0<c<1C.0<a<1,0<c<1D.0<a<1,c>1

分析 根据函数的单调性,可判断a的取值,根据函数图象与坐标轴的交点位置,可判断c的取值,进而得到答案.

解答 解:∵函数y=loga(x+c)(a>0且a≠1,a,c为常数)为减函数,
故0<a<1,
∵函数图象与x轴的交点在正半轴,
故x=1-c>0,即c<1,
∵函数图象与y轴有交点,
故c>0,
故0<c<1,
故选:C.

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若一个四棱锥的底面是边长为4的正方形,各侧棱都等于3,那么这个四棱锥的高等于(  )
A.1B.$\sqrt{2}$C.5D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.扇形AOB的周长为8cm.,它的面积为3cm2,求圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x+y-a≤0\\ x-y≥0\\ y+a≥0\end{array}\right.$,若变量x的最大值为6,则变量y的取值范围为$[-3,\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若一个几何体的三视图都是圆,则这个几何体一定是球.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C对应的边分别为a,b,c(a≤b≤c),且bcosC+ccosB=2asinA.
(Ⅰ)求角A;
(Ⅱ)求证:${a^2}≥(2-\sqrt{3})bc$;
(Ⅲ)若a=b,且BC边上的中线AM长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥S-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD.
(1)求四棱锥S-ABCD的体积;
(2)(理)求SC与平面SAB所成角的大小
(文)求异面直线SC与AD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈Z)的图象与坐标轴无公共点,且关于原点对称,则实数m的取值集合为{0,2}.

查看答案和解析>>

同步练习册答案