精英家教网 > 高中数学 > 题目详情

经过双曲线数学公式的左焦点F1作倾斜角为数学公式的弦AB.
求:(1)线段AB的长; 
(2)设F2为右焦点,求△F2AB的面积.

解:(1)双曲线的左焦点为F1(-2,0),
设A(x1,y1),B(x2,y2),则直线
代入3x2-y2-3=0整理得8x2-4x-13=0
∴x1+x2=,x1x2=-
∴|x1-x2|=
由距离公式|x1-x2|=3(6分)
(2)F2(2,0),由点到直线的距离公式可得:点F到直线AB的距离d=2
∴△F2AB的面积为×3×2=3(6分)
分析:(1)双曲线的左焦点为F1(-2,0),确定直线AB的方程,代入3x2-y2-3=0,利用韦达定理,即可得到线段AB的长;
(2)求出点F到直线AB的距离,即可得到△F2AB的面积.
点评:本题考查直线与双曲线的位置关系,考查弦长公式的运用,考查三角形的面积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线E:
x2
24
-
y2
12
=1
的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有
|GF|
|GP|
=
1
2
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ
正切值的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|
取得最小值时,求此双曲线的方程.
(3)设F1为(2)中所求双曲线的左焦点,若A、B分别为此双曲线渐近线l1、l2上的动点,且2|AB|=5|F1F|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知双曲线
x2
a2
-
y2
b2
=1
的渐近线方程为y=±
3
3
x
,左焦点为F,过A(a,0),B(0,-b)的直线为l,原点到直线l的距离是
3
2

(1)求双曲线的方程;
(2)已知直线y=x+m交双曲线于不同的两点C,D,问是否存在实数m,使得以CD为直径的圆经过双曲线的左焦点F.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江哈尔滨第十二中学高二上期末考试理科数学卷(解析版) 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是

(1)求双曲线的方程;

(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市八校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过A(a,0),B(0,-b)的直线为l,原点到直线l的距离是
(1)求双曲线的方程;
(2)已知直线y=x+m交双曲线于不同的两点C,D,问是否存在实数m,使得以CD为直径的圆经过双曲线的左焦点F.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案