精英家教网 > 高中数学 > 题目详情

【题目】是公比为正数的等比数列,,

(1)的通项公式;

(2)是首项为1,公差为2的等差数列,求数列的前项和

【答案】(1)(2)

【解析】

(1)根据等比数列的通项公式得到:,解得二次方程可得到(舍去),进而得到数列的通项;(2)已知数列的类型是等差数列与等比数列求和的问题,根据等差等比数列求和公式得到结果即可.

:(1)为等比数列的公比,则由,:

,解得:(舍去)

所以的通项公式为

(2) 由 等 差 数 列 的 通 项 公 式 得 到:

由 等 差 数 列求 和 公 式 和 等 比 数 列 前 n 项 和 公 式 得 到

【点睛】

这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。

型】解答
束】
18

【题目】a≠b,解关于x的不等式a2xb2(1-x)≥[axb(1-x)]2

【答案】{x|0≤x≤1}.

【解析】

将原不等式化简为(ab)2(x2x) ≤0,由条件得到系数(ab)2>0,直接解出不等式x2x≤0即可.

解:将原不等式化为

(a2b2)x+b2≥(ab)2x2+2(a-b)bxb2

移项,整理后得 (ab)2(x2x) ≤0,…

ab (ab)2>0,

x2x≤0,

x(x-1) ≤0.

解此不等式,得解集 {x|0≤x≤1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:

身高达标

身高不达标

总计

积极参加体育锻炼

40

不积极参加体育锻炼

15

总计

100

(1)完成上表;

(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).

参考公式:

参考数据:

P(K2≥k)

0.25

0.15

0.10

0.05

0.025

0.010

0.001

k

1.323

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+ +5(常数a,b∈R)满足f(1)+f(﹣1)=14.
(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;
(2)若f(x)在区间(﹣∞,﹣ )上单调递减,求b的最小值;
(3)在(2)的条件下,当b取最小值时,证明:f(x)恰有一个零点q且存在递增的正整数数列{an},使得 =q +q +q +…+q +…成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为负整数)的图像经过点.

1)求的解析式;

2)设函数,若上解集非空,求实数b的取值范围;

3)证明:方程有且仅有一个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(

A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,当x>0时,f(x)=x﹣1,则不等式f(x)<0的解集为(

A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

同步练习册答案