【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
【答案】(1)(2)
【解析】
(1)根据等比数列的通项公式得到:,解得二次方程可得到或(舍去),进而得到数列的通项;(2)已知数列的类型是等差数列与等比数列求和的问题,根据等差等比数列求和公式得到结果即可.
解:(1)设为等比数列的公比,则由,得:
即,解得:或(舍去)
所以的通项公式为
(2) 由 等 差 数 列 的 通 项 公 式 得 到:
由 等 差 数 列求 和 公 式 和 等 比 数 列 前 n 项 和 公 式 得 到
【点睛】
这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
【题型】解答题
【结束】
18
【题目】设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | ||
不积极参加体育锻炼 | 15 | ||
总计 | 100 |
(1)完成上表;
(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).
参考公式: ,
参考数据:
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+ +5(常数a,b∈R)满足f(1)+f(﹣1)=14.
(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;
(2)若f(x)在区间(﹣∞,﹣ )上单调递减,求b的最小值;
(3)在(2)的条件下,当b取最小值时,证明:f(x)恰有一个零点q且存在递增的正整数数列{an},使得 =q +q +q +…+q +…成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的奇函数,当x>0时,f(x)=x﹣1,则不等式f(x)<0的解集为( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).
(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;
(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量x的分布列;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com