【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若是“等方差数列”,在数列 是等差数列;
②是“等方差数列”;
③若是“等方差数列”,则数列为常)也是“等方差数列”;
④若既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】设函数.
(1)函数在区间是单调函数,求实数的取值范围;
(2)若存在,使得成立,求满足条件的最大整数;
(3)如果对任意的都有成立,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间四边形PABC的各边及对角线长度都相等,D、E、F、G分别是AB、BC、CA、AP的中点,下列四个结论中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两定点, 和一动点,给出下列结论:
①若,则点的轨迹是椭圆;
②若,则点的轨迹是双曲线;
③若,则点的轨迹是圆;
④若,则点的轨迹关于原点对称;
⑤若直线与斜率之积等于,则点的轨迹是椭圆(除长轴两端点).
其中正确的是__________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).
(1)求利润函数的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假,并说明理由.
(1)x∈R,都有x2-x+1>;
(2)α,β,使cos(α-β)=cos α-cos β;
(3)x,y∈N,都有(x-y)∈N;
(4)x,y∈Z,使x+y=3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在实数集上的图象是连续不断的,且对任意实数存在常数使得恒成立,则称是一个“关于函数”.现有下列“关于函数”的结论:
①常数函数是“关于函数”;
②正比例函数必是一个“关于函数”;
③“关于函数”至少有一个零点;
④是一个“关于函数”.
其中正确结论的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ﹣ )= .
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以为组距分成组: , , , , , ,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
定义学生对餐厅评价的“满意度指数”如下:
分数 | |||
满意度指数 |
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com