已知直线,圆.
(1)求直线被圆所截得的弦长;
(2)如果过点的直线与直线垂直,与圆心在直线上的圆相切,圆被直线分成两段圆弧,且弧长之比为,求圆的方程.
(1);(2)或.
解析试题分析:(1)由题意可以通过求弦心距进而求得弦长,而弦心距即为圆心到直线的距离:,再由垂径定理,弦长为;(2)根据题意可求得:,由圆心在直线上,可设,从而根据与圆相切可知圆的半径,再由圆被直线分成两段圆弧,且弧长之比为,可知两段弧的度数分为为,,从而直线截圆的弦的弦心距为半径的一半,即有关于的方程:
,解得或,从而可得圆的方程为:
或.
试题解析:(1)直线被圆所截得弦弦心距为,∴弦长为; 3分
∵过点且与垂直,∴:, 3分
∵圆心在直线上,∴设,∵与圆相切,∴,
设与圆交于,两点,∵圆被直线分成两段圆弧,且弧长之比为,∴,
即可得的弦心距,解得或,
∴圆的方程为:或. 6分
考点:1.直线与圆的位置关系;2.圆的标准方程.
科目:高中数学 来源: 题型:填空题
已知圆与圆,在下列说法中:
①对于任意的,圆与圆始终相切;
②对于任意的,圆与圆始终有四条公切线;
③当时,圆被直线截得的弦长为;
④分别为圆与圆上的动点,则的最大值为4.
其中正确命题的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.求证:
(1)圆心O在直线AD上;
(2)点C是线段GD的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的方程:
(1)求m的取值范围;
(2)若圆C与直线相交于,两点,且,求的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com