精英家教网 > 高中数学 > 题目详情

.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。

   (1)求f(1), f()的值;

   (2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;

   (3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;

   (4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.

(1)f(1)=0f()=-1  (2) 函数y=f(x)在(0,+∞)上是增函数 

(3)数列{an}是首项为1,公差为1的等差数列,从而有an=n  

(4)存在   正数M的范围是


解析:

1)∵f(2×1)=f(2)+f(1), ∴f(1)=0

   又∵f(1)=f(2×)=f(2)+f(),且f(2)=1,∴f()=-1

(2)设…4分

∴函数y=f(x)在(0,+∞)上是增函数

(3)∵f(2)=1, ∴由f(Sn)=f(an)+f(an+1)-1(n∈N*),得f(2Sn)=f[an(an+1)]

∵函数y=f(x)在(0,+∞)上是增函数,

∴2Sn=an(an+1)

∴数列{an}是首项为1,公差为1的等差数列,从而有an=n

(4)∵an=n,故不等式

可化为2n×1×2×3×…×n≥M×1×3×5×…×(2n-1),

是单调递增

对一切n∈N*都成立的正数M的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)=
2x
2x+
2
上两点p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P点的横坐标为
1
2

(1)求P点的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+2+
2
)
对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上连续,则f(x)在R上为递增函数是f′(x)>0的…(    )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是一次函数,若f(1)=-1,且f′(2)=-4,则f(x)的解析式为_________.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:选择题

设函数y=f(x)的图象如图所示,则导函数y=f ¢(x)可能为(    )

 

 

查看答案和解析>>

同步练习册答案