精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C 的左、右焦点为F1F2,设点F1F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.

(1)求椭圆C的标准方程;

(2)ABP为椭圆C上三点,满足,记线段AB中点Q的轨迹为E,若直线lyx1与轨迹E交于MN两点,求|MN|.

【答案】(1) ;(2) .

【解析】试题分析:

(1)由题意可得,即可求出,即可求出椭圆的标准方程;

(2)方法一:设,利用向量,求得点的坐标,根据点在椭圆上,把直线的方程和椭圆方程,利用根与系数的关系、韦达定理,利用弦长公式,即可求解;

方法二:设,根据题意和点在椭圆上,化简整理可得,再根据中点坐标公式,消去 线段的中点的轨迹方程,再设两点点坐标为,根据弦长公式即可求出.

试题解析:

(1)由已知得2c=4,b=2,故c=2,a=2.

故椭圆C的标准方程为=1.

(2)法一 设A(x1,y1),B(x2,y2),∵,∴,故点P坐标为.

由于点P在椭圆C上,

故有=1,

=1,

=1,即=0.

令线段AB的中点坐标为Q(x,y),则

A,B在椭圆C上,故有

相加有=2.

=2,

由于=0,

=2,即Q点的轨迹E的方程为=1.

联立3x2+4x-2=0.

M(x3,y3),N(x4,y4),

x3+x4=-

x3·x4=-.

|MN|=|x3-x4|=.

法二 设A(2cos α,2sin α),B(2cos β,2sin β),

,故点P坐标为.

∵点P在椭圆上,

∴(3cos α+4cos β)2+(3sin α+4sin β)2=25,

∴cos αcos β+sin αsin β=0,∴cos(α-β)=0,

∴α-β=

∴B(2sin α,-2cos α),

∴AB中点Q的坐标为(cos α+sin α,sin α-cos α),

Q的点坐标为(x,y),

∴x=cos α+sin α,y=sin α-cos α,

=cos2α+2cos αsin α+sin2α=1+2cos αsin α,

y2=cos2α-2cos αsin α+sin2α=1-2cos αsin α,

+y2=2,

即线段AB中点Q的轨迹为E的方程为=1.

M,N两点的坐标为(x1,y1),(x2,y2),

y,

整理得3x2+4x-2=0,

∴x1+x2=-,x1x2=-

∴|MN|=|x1-x2|=×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调增区间;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)sinωxcosωxcos2ωx (ω0),经化简后利用“五点法”画其在某一周期内的图象时,列表并填入的部分数据如下表:

x

f(x)

0

1

0

1

0

(1)请直接写出①处应填的值,并求函数f(x)在区间上的值域;

(2)ABC的内角ABC所对的边分别为abc,已知f(A)1bc4a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数图象的对称性与周期性,有下列说法:若函数yf(x)满足f(x1)f(3x),则f(x)的一个周期为T2若函数yf(x)满足f(x1)f(3x),则f(x)的图象关于直线x2对称;函数yf(x1)与函数yf(3x)的图象关于直线x2对称;若函数与函数f(x)的图象关于原点对称,则,其中正确的个数是()

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab分别是△ABC内角AB的对边,且bsin2Aacos Asin B,函数f(x)sin Acos2xsin2sin 2xx.

(1)A

(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E (a>0,b>0)的渐近线方程为3x±4y=0,且过焦点垂直x轴的直线与双曲线E相交弦长为,过双曲线E中心的直线与双曲线E交于AB两点,在双曲线E上取一点C(与AB不重合),直线ACBC 的斜率分别为k1k2,则k1k2等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲](10分)

已知函数f(x)=2|x-2|+3|x+3|.

(Ⅰ)解不等式:f(x)>15;

(Ⅱ)若函数f(x)的最小值为m,正实数ab满足4a+25bm,求的最小值,并求出此时ab的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面五边形ABCDE中,ABCE,且AE2AEC60°CDEDcosEDC.将△CDE沿CE折起,使点D移动到P的位置,且AP得到四棱锥PABCE.

(1)求证:AP⊥平面ABCE

(2)记平面PAB与平面PCE相交于直线l,求证:ABl.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 ,记

(1)求函数f(x)的最小正周期;

(2)试用“五点法”画出函数f(x)在区间上的简图,并指出该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到;

(3)若函数g(x)=f(x)+m 的最小值为2,试求出函数g(x)的最大值.

查看答案和解析>>

同步练习册答案