精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n项和,求证 <2.

【答案】(1)an=22n-1(2)见解析

【解析】试题分析:(I)利用数列递推关系、等比数列的通项公式即可得出.

(II)利用裂项求和方法、数列的单调性即可得出.

试题解析:

(Ⅰ)当n≥3时,可得Sn-4Sn-1-2-(Sn-1-4Sn-2-2)=0(n≥2,n∈Z).∴an=4an-1

又因为a1=2,代入表达式可得a2=8,满足上式.

所以数列{an}是首项为a1=2,公比为4的等比数列,故:an=2×4n-1=22n-1

(Ⅱ)证明:bn=log2an=2n-1.

Tn==n2

n≥2时,==≤1++…+=2-<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值点,求的极大值;

(2)求实数的范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调增区间;
(2)若 ,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )单调,则ω的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:

5860 6520 7326 6798 7325

8430 8215 7453 7446 6754

7638 6834 6460 6830 9860

8753 9450 9860 7290 7850

对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:

步数分组统计表(设步数为x

组别

步数分组

频数

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)写出mn的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;

(Ⅱ)记C组步数数据的平均数与方差分别为v1 ,E组步数数据的平均数与方差分别为v2 ,试分别比较v1v2 的大小;(只需写出结论)

(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.

(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;

(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1 , AB,BB1 , B1C1的中点,则异面直线EF与GH所成的角等于(
A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.

(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?

(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:年平均利润最大时,以46万元出售该工作室;纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?

查看答案和解析>>

同步练习册答案