分析 由正弦定理ME=EN,设ME=EN=1,从而DE=$\frac{sinN}{sin(60°-N)}$,由∠EDM=120°-2∠N,得DE=$\frac{sinNcosN}{sin(60°-N)cos(60°-N)}$,由此能证明N=30°.
解答 证明:由正弦定理得$\frac{NE}{sin∠ECN}$=$\frac{CN}{∠CEN}$,$\frac{ME}{sinB}$=$\frac{BM}{sin∠BEM}$,
∵∵△ABC是等边三角形,BM=CN,
∴ME=EN,设ME=EN=1,
∵∠1=60°,∴∠EDN=60°-∠N
∴DE=$\frac{sinN}{sin(60°-N)}$,
∵∠EDM=120°-2∠N
∴DE=$\frac{sin2N}{sin(120°-2N)}$=$\frac{sinNcosN}{sin(60°-N)cos(60°-N)}$=$\frac{sinN}{sin(60°-N)}$,
∵0<N<60°,∴sinN,sin(60°-N)都不为0
∴cosN=cos(60°-N),∴N=60°-N,
解得N=30°.
点评 本题考查三角形一个内角为30°的证明,是中档题,解题时要认真审题,注意正弦定理、二倍角公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等于1m | B. | 大于1m | C. | 小于1m | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=a|x| | B. | y=1+a|x| | C. | y=logax | D. | y=loga(1-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com