精英家教网 > 高中数学 > 题目详情

【题目】已知函数有极值.

(1)求的取值范围;

(2)若处取得极值,且当时,恒成立,求的取值范围.

【答案】(1);(2)

【解析】

(1)由已知中函数解析式,求出导函数f′(x)的解析式,然后根据函数有极值,方程f′(x)=x2-x+c=0有两个实数解,构造关于c的不等式,解不等式即可得到c的取值范围;

(2)若f(x)在x=2处取得极值,则f′(2)=0,求出满足条件的c值后,可以分析出函数的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围.

(1)∵

因为有极值,则方程有两个相异实数解,

从而

。∴c的取值范围为.

(2)∵处取得极值,

,∴.

∴当时,,函数单调递增;当时,,函数单调递减.∴当x<0时,在x=-1处取得最大值

∵x<0时,恒成立,

,即

∴d的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和为 ,数列满足: ,数列的前n项和为

(1)求数列的通项公式及前n项和;

(2)求数列的通项公式及前n项和;

(3)记集合,若M的子集个数为16,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,下列命题正确的是( )

A.若平面内有无数条直线与直线平行,则

B.若平面内有无数条直线与平面平行,则

C.若平面内有无数条直线与直线垂直,则

D.若平面内有无数条直线与平面垂直,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设,求函数的单调区间;

(Ⅱ)若曲线在公共点处有相同的切线,求点的横坐标;

(Ⅲ)设,且曲线总存在公切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm

1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.

2)在身高为140—160的学生中任选2,求至少有一人的身高在150—160之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为F,直线l过点,交抛物线于AB两点.

1)若P中点,求l的方程;

2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论中,错误的序号是___________.①以直角坐标系中轴的正半轴为极轴的极坐标系中,曲线C的方程为,若曲线C上总存在两个点到原点的距离为,则实数的取值范围是;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量,若,则;④已知为满足能被9整除的正数的最小值,则的展开式中,系数最大的项为第6项.

查看答案和解析>>

同步练习册答案