精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

【答案】
(1)解:a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,

解得:﹣ ≤x≤


(2)解:不等式f(x)≥1﹣a+2|2+x|成立,

即|3x﹣a|﹣|3x+6|≥1﹣a,

由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,

即有f(x)的最大值为|a+6|,

解得:a≥﹣


【解析】(1)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于a,即可解出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C,直线l

求证:直线l与圆C必相交;

求直线l被圆C截得的弦长最短时直线l的方程以及最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.

(1)求证:平面ABC1⊥平面A1B1C;
(2)设D为AC的中点,求平面ABC1与平面C1BD所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查某校 100 名学生的数学成绩情况,得下表:

一般

良好

优秀

男生(人)

18

女生(人)

10

17

已知从这批学生中随机抽取1名学生,抽到成绩一般的男生的概率为0.15.

(1)求的值;

(2)若用分层抽样的方法,从这批学生中随机抽取20名,问应在优秀学生中抽多少名?

(3)已知,优秀学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心为坐标原点O,对称轴为坐标轴,且过M2 N(,1)两点,

I)求椭圆的方程;

II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的导函数为y=f′(x),且f′(x)=sin2x﹣ cos2x,则下列说法正确的是(
A.y=f(x)的周期为
B.y=f(x)在[0, ]上是减函数
C.y=f(x)的图象关于直线x= 对称
D.y=f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用元表示出租自行车的日纯收入日纯收入一日出租自行车的总收入管理费用

求函数的解析式及其定义域;

当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题.

a∥b; ②a∥b; ③α∥β;

α∥β; ⑤a∥α; ⑥a∥α,

其中正确的命题是________.(填序号)

查看答案和解析>>

同步练习册答案