【题目】已知y=ax2+bx(a<0)通过点(1,2),且其图象与y=﹣x2+2x的图象有二个交点(如图所示).
(1)求y=ax2+bx与y=﹣x2+2x所围成的面积S与a的函数关系;
(2)当a,b为何值时,S取得最小值.
【答案】
(1)解:由y=ax2+bx通过点(1,2)可得a+b=2
即b=2﹣a,由 ,解得
则y=ax2+bx与y=﹣x2+2x所围成的面积S与a的函数关系为
(2)解:由 ,得 ,
由S'=0得a=﹣3,a=﹣1,
当a=﹣1时,两曲线只有一个交点,不合题意.
当a<﹣3,S'<0,当a>﹣3S'>0,
所以当a=﹣3时,S取得极小值,即最小值,此时b=2﹣a=5,
【解析】(1)有已知可得其中一个交点是原点,把另一个交点表示出来,再利用定积分把面积表示处理即可;(2)结合(1)利用导数求解.
【考点精析】认真审题,首先需要了解二次函数的性质(当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减).
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的长轴长为,且椭圆与圆: 的公共弦长为.
(1)求椭圆的方程.
(2)经过原点作直线(不与坐标轴重合)交椭圆于, 两点, 轴于点,点在椭圆上,且,求证: , , 三点共线..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )
A.甲是乙成立的充分不必要条件
B.甲是乙成立的必要不充分条件
C.甲是乙成立的充要条件
D.甲是乙成立的非充分非必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由于某种商品开始收税,使其定价比原定价上涨x成(即上涨率为 ),涨价后商品卖出的个数减少bx成,税率是新价的a成,这里a,b均为常数,且a<10,用A表示过去定价,B表示过去卖出的个数.
(1)设售货款扣除税款后,剩余y元,求y关于x的函数解析式;
(2)要使y最大,求x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x3﹣1)2+1,下列结论中正确的是( )
A.x=1是函数f(x)的极小值点,x=0是函数f(x)的极大值点
B.x=1及x=0均是函数f(x)的极大值点
C.x=1是函数f(x)的极大值点,x=0是函数f(x)的极小值点
D.x=1是函数f(x)的极小值点,函数f(x)无极大值点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点.
(1)若当点的横坐标为,且为等腰三角形,求的方程;
(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)若直线与曲线相交于, 两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
做不到“光盘” | 能做到“光盘” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com