精英家教网 > 高中数学 > 题目详情
16.在等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9=8.

分析 由a3a11=4a7,解出a7的值,由 b5+b9=2b7 =2a7 求得结果.

解答 解:等比数列{an}中,由a3a11=4a7,可知a72=4a7,∴a7=4,
∵数列{bn}是等差数列,∴b5+b9=2b7 =2a7 =8,
故答案为:8.

点评 本题考查等差数列、等比数列的性质,求出a7的值是解题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合P={x∈Z||x-1|<2},Q={x∈Z|-1≤x≤2},则P∩Q=(  )
A.{0,1,2}B.{-1,0,1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC是正三角形,若$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$与向量$\overrightarrow{AC}$的夹角大于90°,则实数λ的取值范围是(  )
A.(2,+∞)B.(-∞,-2)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC的三边成等差数列,最大边长为26,且它所对角的余弦值为$\frac{1}{6}$,则最小边长为(  )
A.18B.24C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.
(1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
(2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,满足Sn=2(an-n),n∈N+*
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+5(a>1),若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.M科技公司从45名男员工、30名女员工中按照分层抽样的方法组建了一个5人的科研小组.
(1)求某员工被抽到的概率及科研小组中男女员工的人数;
(2)这个科研小组决定选出两名员工做某项实验,方法是先从小组中选出1名员工做实验,该员工做完后,再从小组内剩下的员工中选一名员工做实验,求选出的两名员工中恰有一名女员工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别为PA,BC的中点,且PD=AD=$\sqrt{2}$
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD.
(3)求三棱锥A-MBC的体积.

查看答案和解析>>

同步练习册答案