精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,则当x>0时,f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:根据f(x)的奇偶性与f(x)在x≤0时的解析式,求出f(x)在x>0时的解析式即可.
解答: 解:∵f(x)是定义在R上的奇函数,
∴f(-x)=-f(x);
又∵x≤0时,f(x)=2x+x2
∴x>0时,-x<0,
f(-x)=2(-x)+(-x)2=-2x+x2
∴-f(x)=-2x+x2
∴f(x)=2x-x2
故答案为:2x-x2
点评:本题考查了函数的奇偶性的应用问题,也考查了求函数解析式的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:a*b的运算原理如图所示,设f(x)=(0*x)x-(2*x),则f(x)在区间[-2,3]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(x-
π
3
)的图象向左平移
π
6
个单位,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为(  )
A、y=sin(
1
2
x-
π
3
B、y=sin(2x-
π
6
C、y=sin
1
2
x
D、y=sin(
1
2
x-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(λ,2),
b
=(-3,5),且
a
b
的夹角为锐角,则λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:实数x满足x2-2x-8≤0;命题q:实数x满足|x-2|≤m(m>0).
(1)当m=3时,若“p且q”为真,求实数x的取值范围;
(2)若“非p”是“非q”的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x+2013)(x-2014)的图象与x轴、y轴有3个不同的交点,有一个圆恰经过这三个点,则此圆与坐标轴的另一个交点的坐标是(  )
A、(0,
1
2
B、(0,1)
C、(0,
2013
2014
D、(0,
2014
2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),圆C的极坐标方程为ρ=2cos(θ+
π
4
).
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log(x-1)+2(a>0且a≠1)的图象恒过定点为(  )
A、(3,2)
B、(2,1)
C、(2,2)
D、(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1
(Ⅰ)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1
(Ⅱ)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA++PC最小时,求证:B1B⊥平面APC.

查看答案和解析>>

同步练习册答案