精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+2ax+3a+2.

(1)若函数f(x)的值域为[0,+∞),求a的值;

(2)若函数f(x)的函数值均为非负实数,求g(a)=2-a|a+3|的取值范围.

【答案】(1)a=-,或a=2; (2)[-8,].

【解析】

(1)若函数的值域为,则△,解得的值;

(2)若函数的函数值均为非负实数,则△,进而可得函数的(a)的值域.

(1)∵函数的值域为[0,+∞),

解得:a=-,或a=2.

(2)∵对一切实数函数值均为非负,

解得:-≤a≤2,

∴a+3>0,

∴g(a)=2-a|a+3|=2-a(a+3)=-(a+2+-,

∵二次函数g(a)在[-,2]上单调递减,

∴g(2)=-8≤g(a)≤g(-)=

∴g(a)的值域为[-8,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log4(22x+1)+mx的图象经过点 .

(Ⅰ)求m值并判断的奇偶性;

(Ⅱ)设gx)=log4(2x+x+afx),若关于x的方程fx)=gx)在x∈[-2,2]上有且只有一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在 上的奇函数,当时,函数解析式为.

)求的值,并求出上的解析式;

)求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣ )=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两直线,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形ABC的中线AF与中位线DE相交于G,已知AEDAEDDE旋转过程中的一个图形,给出以下四个命题:①AC平面ADF;②平面AGF平面BCED;③动点A′在平面ABC上的射影在线段AF上;④异面直线AEBD不可能垂直.其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

同步练习册答案