精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,椭圆上一点轴上存在一点满足.

(1)求椭圆的方程;

(2)直线与椭圆相切于第一象限上的点,且分别与轴、轴交于两点,求的最小值.

【答案】(1);(2)3.

【解析】

(1)根据向量的坐标运算可先求出的坐标为,再由向量垂直求出,即可写出方程(2)设直线的方程为,联立椭圆方程,根据相切可知,求得,根据两点间距离公式得,准化为关于的式子,利用均值不等式求最值.

(1)设椭圆的焦距为

则点的坐标为,点的坐标为

设点的坐标为

,则

,则点的坐标为

直线与直线垂直,且点

所以

,得,所以

因此,椭圆的方程为.

(2)设直线的方程为

联立,得

,

当且仅当,即“=”成立,

的最小值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知斜率为的直线与椭圆交于两点,线段的中点为

(1)证明:

(2)设的右焦点,上一点,.证明:成等差数列,并求该数列的公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由样本数据点集合,求得的回归直线方程为,且,现发现两个数据点误差较大,去除后重新求得的回归直线l的斜率为1.2,则(

A.变量xy具有正相关关系B.去除后的回归方程为

C.去除后y的估计值增加速度变快D.去除后相应于样本点的残差为0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=etxt0),过点Pt0)且平行于y轴的直线与曲线Cyfx)的交点为Q,曲线C过点Q的切线交x轴于点R,若S1f1)),则PRS的面积的最小值是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.

表1 甲流水线样本的频数分布表

质量指标值

频数

(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?

(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;

(3)根据已知条件完成下面列联表,并判断在犯错误概率不超过的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?

甲生产线

乙生产线

合计

合格品

不合格品

合计

附:(其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手再从全校征集出3位志愿者分别与进行一场技术对抗赛根据以往经验 与这三位志愿者进行比赛一场获胜的概率分别为且各场输赢互不影响.

(1)求甲恰好获胜两场的概率;

(2)求甲获胜场数的分布列与数学期望.

查看答案和解析>>

同步练习册答案