精英家教网 > 高中数学 > 题目详情
5.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则k的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]

分析 求出不等式的等价条件,利用充分条件和必要条件的定义即可得到结论.

解答 解:由:(x+1)(2-x)<0<0得x>2或x<-1,即q:x>2或x<-1,
∵p是q的充分不必要条件,
∴k>2,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据不等式的解法,求出不等式的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设a为正实数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+$\frac{a}{x}$+7,若f(x)≥1-a对一切x>0成立,则a的取值范围为[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线y=xex在点(1,e)处的切线与直线ax+by+c=0垂直,则$\frac{a}{b}$的值为$\frac{1}{2e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.若$\overrightarrow{a_0}$与$\overrightarrow{b_0}$是单位向量,则${\vec a_0}•{\vec b_0}=1$
B.若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
C.$|\overrightarrow a+\overrightarrow{b|}=|\overrightarrow a-\overrightarrow b|$,则$\vec a•\vec b=0$
D.($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.m为何实数时,关于x的一元二次方程mx2-(1-x)+m=0,
(1)有两个不相等的实数根;
(2)有两个不相等的正实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某四面体的三视图如图所示,该四面体四个面的面积中最大的是(  )
A.$4\sqrt{5}$B.$4\sqrt{2}$C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1、F2分别为它的左、右焦点,过焦点且垂直于X轴的弦长为3,且两焦点与短轴一端点构成等边三角形.
(1)求椭圆C的方程;
(2)问是否存在过椭圆焦点F2的弦PQ,使得|PF1|,|PQ|,|QF1|成等差数列,若存在,求出PQ所在直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,B=30°,C=45°,则$\frac{a+c}{b}$=$\frac{\sqrt{6}+3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xoy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

同步练习册答案