精英家教网 > 高中数学 > 题目详情
设a,b,c为正实数,且a+b+c=1,则ab2c的最大值为
 
分析:把a+b+c=1中的b变为两个
b
2
相加,因为a,b,c为正实数,所以利用基本不等式a+b+c+d≥4
4abcd
变形后,两边四次方即可求出所求式子的最大值.
解答:解:因为a,b,c为正实数,
则1=a+b+c=a+
b
2
+
b
2
+c≥4
4a•
b
2
b
2
•c
=4
4
ab2c
4

当且仅当a=
b
2
=c,即a=c=
1
4
,b=
1
2
时取等号,
两边四次方得:
ab2c
4
(
1
4
)
4
即ab2c≤
1
64

故答案为:
1
64
点评:此题考查学生灵活运用基本不等式求函数的最大值,是一道中档题.本题可以训练答题者灵活变形及选用知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c为正实数,求证:
1
a3
+
1
b3
+
1
c3
+3abc≥6
,并指出等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为正实数,求证:
1
a3
+
1
b3
+
1
c3
+abc≥2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南京模拟)A.选修4-1几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.
求证:ED2=EB•EC.
B.矩阵与变换
已知矩阵A=
2-1
-43
4-1
-31
,求满足AX=B的二阶矩阵X.
C.选修4-4 参数方程与极坐标
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
),它们相交于A,B两点,求线段AB的长.
D.选修4-5 不等式证明选讲设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南京模拟)设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

同步练习册答案