精英家教网 > 高中数学 > 题目详情
(2013•渭南二模)如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若PB=PD,求证:BD⊥CQ;
(Ⅱ)在(Ⅰ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.
分析:(Ⅰ)先证明BD⊥平面PAC,利用线面垂直的性质,可证BD⊥CQ;
(Ⅱ)先证明PO⊥平面ABCD,即PO为四棱锥P-ABCD的高,求出BO,PO,即可求四棱锥P-ABCD的体积.
解答:解:(Ⅰ)证明:连接AC,交BD于O.
因为底面ABCD为菱形,所以O为AC中点.
所以AC⊥BD,O为BD中点.
因为PB=PD,所以PO⊥BD.
因为PO∩BD=O,所以BD⊥平面PAC.
因为CQ?平面PAC,所以BD⊥CQ.
(Ⅱ)解:因为PA=PC,所以△PAC为等腰三角形.
因为O为AC中点,所以PO⊥AC.
由(Ⅱ)知PO⊥BD,且AC∩BD=O,所以PO⊥平面ABCD,即PO为四棱锥P-ABCD的高.
因为四边形是边长为2的菱形,且∠ABC=60°,所以BO=
3

所以PO=
6

所以VP-ABCD=
1
3
×2
3
×
6
=2
2
,即VP-ABCD=2
2
点评:本题考查线面垂直,考查四棱锥的体积,解题的关键是掌握线面垂直的判定方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•渭南二模)某几何体的主视图与俯视图如图所示,左视图与主视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)若函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=
1gx(x>0)
-
1
x
(x<0)
,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)在等差数列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an+bn}是首项为1,公比为c的等比数列,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于两点A和B,则|AB|=
14
14

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)设x∈R,i是虚数单位,则“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯数”的(  )

查看答案和解析>>

同步练习册答案