精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,
F1F2
F1P
上的投影的大小恰好为|
F1P
|
且它们的夹角为
π
6
,则双曲线的离心率e为(  )
A、
2
+1
2
B、
3
+1
2
C、
3
+1
D、
2
+1
分析:先根据
F1F2
F1P
上的投影的大小恰好为|
F1P
|
判断两向量互相垂直得到直角三角形,进而根据直角三角形中内角为
π
6
,结合双曲线的定义建立等式求得a和c的关系式,最后根据离心率公式求得离心率e.
解答:解:∵
F1F2
F1P
上的投影的大小恰好为|
F1P
|

∴PF1⊥PF2
且它们的夹角为
π
6
,∴∠PF 1F 2=
π
6

∴在直角三角形PF1F2中,F1F2=2c,
∴PF2=c,PF1=
3
c

又根据双曲线的定义得:PF1-PF2=2a,
3
c-c=2a
c
a
=
3
+1

e=
3
+1

故选C.
点评:本题主要考查了双曲线的简单性质.考查了学生综合分析问题和运算的能力.解答关键是通过解三角形求得a,c的关系从而求出离心率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案