精英家教网 > 高中数学 > 题目详情
2.已知tanα=-$\frac{4}{3}$,sinβ=$\frac{3}{5}$,且α、β∈($\frac{π}{2}$,π),求sin(α-β)的值.

分析 利用两角和差的正弦公式进行化简求解即可.

解答 解:题tanα=-$\frac{4}{3}$,sinβ=$\frac{3}{5}$,且α、β∈($\frac{π}{2}$,π),
∴tanα=-$\frac{4}{3}$=$\frac{sinα}{cosα}$,
即3sinα=-4cosα,
∵sin2α+cos2α=1,
∴解得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
同时cosβ=-$\frac{4}{5}$,
则sin(α-β)=sinαcosβ-cosαsinβ=$\frac{4}{5}$×(-$\frac{4}{5}$)-(-$\frac{3}{5}$)×$\frac{3}{5}$=-$\frac{16}{25}$+$\frac{9}{25}$=-$\frac{7}{25}$.

点评 本题主要考查三角函数值的计算,利用两角和差的正弦公式以及同角的三角函数关系式进行化简求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列各组向量中可以作为基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:设三角形的外接圆的半径是R,则
a=2RsinA,b=2RsinB,c=2RsinC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{m}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$-k$\overrightarrow{b}$.
(1)若$\overrightarrow{n}$⊥$\overrightarrow{a}$,求k的值;
(2)当k=2时,求$\overrightarrow{m}$与$\overrightarrow{n}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三角形ABC中,如果sin2A+sin2B=sin(A+B),且A,B都是锐角,则A+B的值为(  )
A.$\frac{2π}{3}$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,不等式f(x)≤3的解集为[1,2].
(1)求f(x)的解析式;
(2)求函数f(x)在[m,m+1](m∈R)上的最小值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2016年元旦期间,某市信鸽协会组织“元旦杯”鸽王大赛,大赛分资格赛(初赛)和精英赛(初赛通过才可参加的复赛),某信鸽爱好者共有A、B、C三只信鸽参赛,三只信鸽的水平是:资格赛通过的概率依次为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,精英赛获奖的概率依次为$\frac{1}{2}$,$\frac{2}{3}$,$\frac{5}{6}$,获奖的信鸽每只奖900元,两次比赛相互之间没有影响,信鸽之间互不影响.
(1)求A,B,C,三只信鸽中恰有2只获奖的概率;
(2)用X表示此信鸽爱好者获得的奖金数,求X的分布列和数学期望EX;
(3)此信鸽爱好者拥有高水平的信鸽120只,它们无风时的飞行速度的成绩为ξ(公里/小时),ξ~N(80,60),若P(60≤ξ≤80)=0.35,试估计速度在100(公里/小时)以上的鸽子数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两个等差数列{an}和{bn},它们的前n项和分别为Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+5}{3n-2}$,则$\frac{{a}_{5}+{a}_{6}+{a}_{7}}{{b}_{5}+{b}_{6}+{b}_{7}}$=$\frac{27}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=2x-1+lg(x+1)-15的零点在下面哪个区间内?(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

同步练习册答案