精英家教网 > 高中数学 > 题目详情
二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),导函数的图象与直线y=-
x
2
垂直
(1)求f(x)的解析式
(2)若函数g(x)=
f(x)-m
x
在(0,2)上是减函数,求实数m的取值范围.
分析:(1)根据函数模型设出函数解析式,然后根据f(0)=2,f(x)=f(-2-x),导函数的图象与直线y=-
x
2
垂直建立方程,解之即可;
(2)根据g(x)=x+
2-m
x
+2图象的性质建立不等式式组,解之即可.
解答:解:(1)设f(x)=ax2+bx+c(a≠0)
∵f(0)=2∴c=2
∵f(x)=f(-2-x)
∴图象的对称轴-
b
2a
=-1

导函数图象与直线y=-
x
2
垂直
∴2a=2从而解得:a=1  b=2  
∴a=1  b=2 c=2
∴f(x)=x2+2x+2  (x∈R)…(6)
(2)g(x)=
x 2+2x+2-m
x
=x+
2-m
x
+2在(0,2)上是减函数
当2-m≤0时,该函数在(0,+∞)上单调递增,故不符号题意.
g(x)=x+
2-m
x
+2≥2
2-m
+2
该函数在(0,
2-m
)上是减函数,在(
2-m
,+∞)上递减
2-m>0
2-m
≥2

∴m≤-2…(12)
点评:本题主要考查了导数的几何意义,以及函数解析式和二次函数的性质和对勾函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则函数y=f(x)-3的零点是
-1,2
-1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足:①在x=1时有极值;②二次函数图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间与极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),它的导函数的图象与直线y=2x平行.
(I)求f(x)的解析式;
(II)若函数g(x)=xf(x)-x的图象与直线y=m有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知一次函数f(x)满足条件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函数f(x)满足条件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步练习册答案