精英家教网 > 高中数学 > 题目详情
设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(I) 当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,在区间[-1,0]上是否存在实数k使不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立,若存在,求出k的值,若不存在,说明理由.
分析:(I)当a=1时,f(x)=-x(x-1)2=-x3+2x2-x,得f(2)=-2,且f′(x)=-3x2+4x-1,f′(2)=-5.由此能求出曲线y=-x(x-1)2在点(2,-2)处的切线方程.
(Ⅱ)f(x)=-x(x-a)2=-x3+2ax2-a2x,f′(x)=-3x2+4ax-a2=-(3x-a)(x-a).令f′(x)=0,解得x=
a
3
,或x=a.由a的符号进行分类讨论,能求出函数f(x)的极大值和极小值.
(Ⅲ)假设在区间[-1,0]上存在实数k满足题意.由a>3,得
a
3
>1
,当k∈[-1,0]时,k-cosx≤1,k2-cos2x≤1.由f(x)在(-∞,1]上是减函数,知要使f(k-cosx)≥f(k2-cos2x)≥f(k2-cos2x),x∈R,只要k-cosx≤k2-cos2x,(x∈R).由此能推导出在区间[-1,0]上存在k=-1,使得f(x-cosx)≥f(k2-cos2x)对任意的x∈R恒成立.…13分.
解答:解:(I)当a=1时,f(x)=-x(x-1)2=-x3+2x2-x,得f(2)=-2,
且f′(x)=-3x2+4x-1,f′(2)=-5.
所以,曲线y=-x(x-1)2在点(2,-2)处的切线方程是y+2=-5(x-2),
整理得5x+y-8=0.…3分
(Ⅱ)f(x)=-x(x-a)2=-x3+2ax2-a2x,
f′(x)=-3x2+4ax-a2=-(3x-a)(x-a).
令f′(x)=0,解得x=
a
3
,或x=a.
由于a≠0,以下分两种情况讨论.
(1)若a>0,当变化时,f′(x)的正负如下表:
x (-∞,
a
3
a
3
a
3
,a)
a (a,+∞)
f′(x) 0 0
因此,函数f(x)在x=
a
3
处取得极小值f(
a
3
),且f(
a
3
)=-
4
27
a3
函数f(x)在x=a处取得极大值f(a),且f(a)=0.…5分
(2)若a<0,当变化时,f′(x)的正负如下表:
x (-∞,a) a (a,
a
3
a
3
a
3
,+∞
f′(x) 0 0
因此,函数f(x)在x=a处取得极小值f(a),且f(a)=0;
函数f(x)在x=
a
3
处取得极大值f(
a
3
),且f(
a
3
)=-
4
27
a3. …8分
(Ⅲ)假设在区间[-1,0]上存在实数k满足题意.
由a>3,得
a
3
>1
,当k∈[-1,0]时,k-cosx≤1,
k2-cos2x≤1.
由(Ⅱ)知,f(x)在(-∞,1]上是减函数,
要使f(k-cosx)≥f(k2-cos2x)≥f(k2-cos2x),x∈R
只要k-cosx≤k2-cos2x,(x∈R)
即cos2x-cosx≤k2-k,(x∈R)①
设g(x)=cos2x-cosx=(cosx-
1
2
2-
1
4
,则函数g(x)在R上的最大值为-
1
4

要使①式恒成立,必须k2-k≥2,即k≥2,或k≤-1.
所以,在区间[-1,0]上存在k=-1,
使得f(x-cosx)≥f(k2-cos2x)对任意的x∈R恒成立.…13分.
点评:本题考查曲线的切线方程式的求法,考查函数的极大值和极小值的求法,探索满足条件的实数值的求法.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案