(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:
若将频率视为概率,回答下列问题:
(I)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(II)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及.
(I)
(II)的分布列是
0 |
1 |
2 |
|
P |
0.05 |
0.35 |
0.6 |
所以
【解析】解:
(I)甲运动员击中10环的概率是:1—0.1—0.1—0.45=0.35
设事件A表示“甲运动员射击一次,恰好命中9环以上(含9环,下同)”,
则
事件“甲运动员在3次射击中,至少1次击中9环以上”包含三种情况:
恰有1次击中9环以上,概率为
恰有1次击中9环以上,概率为
恰有1次击中9环以上,概率为
因为上述三个事件互斥,所以甲运动员射击3次,至少1次击中9环以上的概率
(II)记“乙运动员射击1次,击中9环以上”为事件B,
则
因为表示2次射击击中9环以上的次数,所以的可能取值是0,1,2。
因为
所以的分布列是
0 |
1 |
2 |
|
P |
0.05 |
0.35 |
0.6 |
所以
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com