精英家教网 > 高中数学 > 题目详情

【题目】为直径的圆上每一点都染上了红、黄、蓝三色之一,已知染上了红色,联结圆上的点组成三角形,给出4个结论:

①必定存在一个直角三角形,三个顶点同为红色;

②必定存在一个直角三角形,三个顶点同色;

③必定存在一个直角三角形,三个顶点全不同色;

④必定存在一个直角三角形,或都三个顶点同色,或者三个顶点全不同色。

则真命题的个数是( )个。

A. 1 B. 2

C. 3 D. 4

【答案】A

【解析】

易知,联结圆上的点组成直角三角形,当且仅当斜边为直径,下面讨论直径.若除点外,圆上再无红点,则结论①不成立;若除点外,圆上再无红点,且其他所有直径的两端点都黄、蓝异色,则结论②不成立;若圆上所有直径的两端点都同色,则结论③不成立.下面证明:结论④成立.若除点外,圆上还有红点,则存在三个顶点同色的直角三角形(同红色),命题成立,若除点外,圆上再无红点(即圆上其余点染上了黄、蓝两色之一),则作直径,当两端异色时,存在三个顶点全不同色的直角三角形,命题成立;当两端同色时,不妨记为同黄色,若此时圆上还有第三个黄点,则存在三个顶点同黄色的直角三角形,命题成立.若此时圆上没有第三个黄点,即除点外圆上全为蓝点,则存在三个顶点同蓝色的直角三角形,命题成立。综上得结论④成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为

1)求的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)设的导函数为,若有两个不相同的零点

求实数的取值范围;

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,主办方制作了一款电脑软件:按下电脑键盘“”键则会出现模拟抛两枚质地均匀的骰子的画面,若干秒后在屏幕上出现两个点数,并在屏幕的下方计算出的值.主办方现规定:每个人去按“”键,当显示出来的小于时则参加甲游戏,否则参加乙游戏.

(1)求这6个人中恰有2人参加甲游戏的概率;

(2)用分别表示这6个人中去参加甲,乙游戏的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右顶点,离心率为为坐标原点.

)求椭圆的方程;

)已知(异于点)为椭圆上一个动点,过作线段的垂线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是正三角形,四边形是菱形,点的中点.

(I)求证:// 平面

(II)若平面平面 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端OA到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m,C位于点O正东方向170 m(OC为河岸),tanBCO=.

1)求新桥BC的长;

2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,过点的直线两点,的周长为的离心率

(Ⅰ)求的方程;

(Ⅱ)设点,过点轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查观众对电影复仇者联盟4”结局的满意程度,研究人员在某电影院随机抽取了1000名观众作调查,所得结果如下所示,其中不喜欢复仇者联盟4”的结局的观众占被调查观众总数的.

男性观众

女性观众

总计

喜欢复仇者联盟4”的结局

400

不喜欢复仇者联盟4”的结局

200

总计

(Ⅰ)完善上述列联表;

(Ⅱ)是否有99.9%的把握认为观众对电影复仇者联盟4”结局的满意程度与性别具有相关性?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案