精英家教网 > 高中数学 > 题目详情
3.如图a∥α,A是α的另一侧的点,B,C,D∈a,线段AB,AC,AD交α于E,F,G,若BD=4,AB=9,AE=5,则EG=(  )
A.5B.$\frac{15}{9}$C.3D.$\frac{20}{9}$

分析 由a∥α,平面α∩平面ABD=EG,得BD∥EG,从而得到EG=$\frac{AE}{AB}•DB$.

解答 解:∵a∥α,平面α∩平面ABD=EG,
∴a∥EG,即BD∥EG,
$\frac{EG}{DB}=\frac{AE}{AB}$⇒$EG=\frac{AE}{AB}•DB=\frac{5}{9}×4=\frac{20}{9}$,
故选:D.

点评 本题考查了线面平行转化为线线平行,及比例性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.24B.16+$4\sqrt{2}$C.40D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知幂函数$f(x)=({m^2}+m-1){x^{-2{m^2}+m+3}}$在(0,+∞)上为增函数,g(x)=-x2+2|x|+t,h(x)=2x-2-x
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y=4x2的焦点到准线的距离是(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线x+y-3m=0与2x-y+2m-1=0的交点在第四象限,则实数m的取值范围为-1<m<$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“m=-1”是“直线x+y=0和直线x+my=0互相垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在长方体ABCD-A1B1C1D1中,已知DA=DC=2,DD1=1,则异面直线A1B与B1C所成角的余弦值$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数$f(x)=2sin(2x+\frac{π}{6})$的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,an+1=$\frac{n+1}{2n}{a_n}$,n∈N*
(1)求证:数列{an}为等比数列.
(2)求{an}数列的前n项和.

查看答案和解析>>

同步练习册答案