精英家教网 > 高中数学 > 题目详情
13.函数f(x)=sinxcosx+cos2x的减区间是$[{kπ+\frac{π}{8},kπ+\frac{5π}{8}}],k∈Z$.

分析 由三角函数公式化简可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.结合正弦函数图象的性质来求其单调减区间.

解答 解:f(x)=sinxcosx+cos2x
=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.
所以2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z.
所以函数f(x)=sinxcosx+cos2x的减区间是kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z.
故答案是:$[{kπ+\frac{π}{8},kπ+\frac{5π}{8}}],k∈Z$.

点评 本题考查二倍角公式,涉及三角函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知直线l1:3x-y+2=0,l2:x+my-3=0,若l1⊥l2,则m的值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},则A∩B=(  )
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=ln({1+x})-x,g(x)=\frac{{{x^2}+2x+a}}{x+2}({a∈R})$.
(1)求函数f(x)的单调区间及最值;
(2)若对?x>0,f(x)+g(x)>1恒成立,求a的取值范围;
(3)求证:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直线$\frac{{\sqrt{2}}}{2}x+y=1$经过Ω的右顶点和上顶点.
(1)求椭圆Ω的方程;
(2)设椭圆Ω的右焦点为F,过点G(2,0)作斜率不为0的直线交椭圆Ω于M,N两点.设直线FM和FN的斜率为k1,k2
①求证:k1+k2为定值;
②求△FMN的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.顶点在原点,对称轴是y轴,且顶点与焦点的距离等于6的抛物线标准方程是x2=±24y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$为纯虚数,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,已知A=$\frac{π}{3}$,a=10.
(1)若B=$\frac{π}{4}$,求△ABC的面积;
(2)求b的取值范围;
(3)求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案