精英家教网 > 高中数学 > 题目详情
9.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$为单位向量,且$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,(k>0),若以向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两边的三角形的面积为$\frac{1}{2}$,则k的值为$\frac{\sqrt{3}}{2}$.

分析 求出$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$的夹角,计算$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$,对$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,两边平方,列出方程解出k.

解答 解:设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$夹角为θ,则$\frac{1}{2}$sinθ=$\frac{1}{2}$,∴sinθ=1,θ=$\frac{π}{2}$.∴$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=0.
∵$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,∴$\overrightarrow{{e}_{3}}$2=$\frac{1}{4}$$\overrightarrow{{e}_{1}}$2+k2$\overrightarrow{{e}_{2}}$2+k$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=1,∴$\frac{1}{4}+{k}^{2}$=1,又k>0,解得k=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{{\sqrt{3}}}{2}$.

点评 本题考查了平面向量的基本定理及其意义,求出$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$的夹角是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知方程$\frac{|{x}^{2}-1|}{x-1}$-kx+2=0恰有两个根,则实数k的取值范围是(0,1)∪(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知全集U=R,A={x|-1≤x≤3},B={x|x-a≥0}.
(Ⅰ)当a=2时,求A∪B,A∩∁UB;
(Ⅱ)若0∈A∩B,求a的取值范围.(写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若指数函数f(x)=(2a-1)x在R内为增函数,则a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a=3,∠B=2∠A,cosA=$\frac{\sqrt{6}}{3}$,则sinA=$\frac{\sqrt{3}}{3}$,b=2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,△ABC三个内角A,B,C的对边分别为a,b,c.
(1)求f(x)的最小正周期和单调递增区间;
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a、b为两条不同的直线,α、β为两个不同的平面,则下列命题中为真命题的是(  )
A.若a⊥α,α⊥β,则a∥βB.若a∥α,b∥α,则a∥bC.若a∥α,α⊥β,则a⊥βD.若a⊥α,a∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线的方程为y2=8x,过其焦点F的直线l与抛物线交于A、B两点,若S△AOF=S△BOF(O为坐标原点),则|AB|=(  )
A.$\frac{16}{3}$B.8C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案