精英家教网 > 高中数学 > 题目详情

【题目】13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式:

①C135﹣C71C64②C72C63+C73C62+C74C61+C75

③C135﹣C71C64﹣C65④C72C113

其中能成为N的算式是______

【答案】②③

【解析】13名医生,其中女医生6人,男医生7人。

利用直接法,23女: 6;32女: ;41女: ;5男: ,所以N= C72C63+C73C62+C74C61+C75

利用间接法:13名医生,任取5,减去4、5名女医生的情况,

N= C135﹣C71C64﹣C65

所以能成为N的算式是②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆过点和点,且圆心在直线上.

(1)求圆的方程;

(2)过点作圆的切线,求切线方程.

(3)设直线,且直线被圆所截得的弦为,满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱的底面是边长为的菱形,且平面,设的中点

1求证:平面

2在线段上,且平面,求平面和平面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数

I若函数处取得极值,求曲线在点处的切线方程;

,函数上的最小值是的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位射击运动员,在某天训练已各射击10次,每次命中的环数如下:

7 8 7 9 5 4 9 10 7 4

9 5 7 8 7 6 8 6 7 7

通过计算估计,甲、乙二人的射击成绩谁更稳

规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至13次射击中获得优秀的次数分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同直线, 是两个不同平面,则下列四个命题:

① 若 ,则

② 若 ,则

③ 若 ,则

④ 若 ,则.

其中正确命题的个数为 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;

方案二:不收管理费,每度0.58元.

1)求方案一收费(元)与用电量(度)间的函数关系;

2)老王家九月份按方案一交费35元,问老王家该月用电多少度?

3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是( )

①命题“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,讨论函数的单调性;

(2)若对任意及任意 ,恒有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案