精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn , a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}满足b3=3,b5=9.
(1)分别求数列{an},{bn}的通项公式;
(2)设Cn= (n∈N*),求证Cn+1<Cn

【答案】
(1)解:①当n≥2时,由an+1=2Sn+1,an=2Sn1+1,得an+1﹣an=2an,即an+1=3an

由a1=1,∴a2=2a1+1=3=3a1

∵a1=1≠0,∴数列{an}是以1为首项,3为公比的等比数列.

②等差数列{bn}满足b3=3,b5=9.设公差为d,则 ,解得

∴bn=﹣3+(n﹣1)×3=3n﹣6


(2)解:由(1)可得 =

=cn

∵3n=(1+2)n= …+2n≥3n,


【解析】(1)①利用 ,及等比数列的通项公式即可得出an;②利用等差数列的通项公式即可得出bn;(2)由 即可得到cn+1<cn;利用二项式定理可得3n=(1+2)n≥3n,即可证明
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.则获得复赛资格的人数为(  )

A. 520 B. 540 C. 620 D. 640

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+acosx+x在点x= 处取得极值.
(1)求实数a的值;
(2)当x∈[﹣ ]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,有下面结论:

①AC∥平面CB1D1

②AC1平面CB1D1

③AC1与底面ABCD所成角的正切值是

④AD1与BD为异面直线.其中正确的结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,P是ABC所在平面外的一点,点A′,B′,C′分别是△PBC,△PCA,△PAB的重心.

(1)求证:平面ABC平面A′B′C′;

(2)求A′B′C′与ABC的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= ,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形ABCD中,,过AB分别作,垂足分别为E已知,将DC沿AEBF折向同侧,得空间几何体,如图2.

,求证:

,线段AB的中点是P,求CP与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上是单调增函数的是(
A.
B.y=|x|﹣1
C.y=lgx
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=cos2x+asinx在区间( )是减函数,则a的取值范围是

查看答案和解析>>

同步练习册答案