【题目】已知函数.
(1)求曲线在点处的切线方程;
(2)求函数的零点和极值;
(3)若对任意,都有成立,求实数的最小值.
【答案】(1);(2)零点,极小值;(3)1.
【解析】分析:(1)求出导函数,切线切线方程为,化简即可;
(2)由得极值点,讨论极值点两边的正负,得极值;
(3)求出在上的最小值和最大值,由最大值-最小值求得,可结合要求的最小值,讨论的单调性及最值.
详解:(1)因为,所以.
因为,所以曲线在处的切线方程为.
(2)令,解得,
所以的零点为.
由解得,
则及的情况如下:
2 | |||
- | 0 | + |
所以函数在时,取得极小值.
(3)法一:
当时,.
当时,.
若,由(2)可知的最小值为,的最大值为,
所以“对任意,有恒成立”等价于
即, 解得. 所以的最小值为1.
法二:当时,. 当时,.
且由(2)可知,的最小值为,
若,令,则
而,不符合要求,
所以. 当时,,,
所以,即满足要求,
综上,的最小值为1.
科目:高中数学 来源: 题型:
【题目】某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N).
(1)求这种商品的日销售金额的解析式;
(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为梯形,平面,,
为中点.
(1)求证:平面平面;
(2)线段上是否存在一点,使平面?若存在,找出具体位置,并进行证明:若不存在,请分析说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线是抛物线的准线,直线,且与抛物线没有公共点,动点在抛物线上,点到直线和的距离之和的最小值等于2.
(Ⅰ)求抛物线的方程;
(Ⅱ)点在直线上运动,过点做抛物线的两条切线,切点分别为,在平面内是否存在定点,使得恒成立?若存在,请求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C1: ,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1 , C2都有公共点,则称P为“C1﹣C2型点”
(1)在正确证明C1的左焦点是“C1﹣C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;
(3)求证:圆x2+y2= 内的点都不是“C1﹣C2型点”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com