精英家教网 > 高中数学 > 题目详情
(2011•洛阳二模)如图,已知PBA是圆O的割线,PC是圆的切线,
C为切点,过点A引AD∥PC,交圆于D点,连接CD,BD,CA.
求证:
(1)CD=CA;
(2)CD2=PA•BD.
分析:(1)利用AD∥PC,PC是圆的切线,证明∠PCD=∠CAD,即可得到结论;
(2)证明△PCA∽△CBD,利用CD=CA,可得CD2=PA•BD.
解答:证明:(1)∵AD∥PC,∴∠PCD=∠CDA,
∵PC是圆的切线,∴∠PCD是弦切角
∴∠PCD=∠CAD,∴CD=CA;
(2)连接BC,则∠BCD=∠BAD

∵AD∥PC,∴∠P=∠DAB,
∴∠P=∠BCD
∴△PCA∽△CBD
BD
AC
=
CD
PA

∵AC=CD
BD
CD
=
CD
PA

∴CD2=PA•BD.
点评:本题考查圆的切线性质,与圆有关的三角形相似的判断,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)的定义域为R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,3]上函数g(x)=f(x)-mx-m恰有四个不同零点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)曲线y=x2ex+2x+1在点P(0,1)处的切线与x轴交点的横坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知函数f(x)=(ax2-2x+a)e-x
(I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l时总有g(x)<h(x),求实数c范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)从8名女生,4名男生中选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为
112
112
. (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)=|2x+1|-|x-2|.
(1)若关于x的不等式a≥f(x)存在实数解,求实数a的取值范围;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案