精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,△ABC为正三角形,EC⊥底面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,
求证:(1)DE=DA;
(2)面BDM⊥面ECA.
分析:(1)取AC中点N,连接MN、BN,欲证DE=DA,根据三角形的中线又是高的三角形是等腰三角形,而M为AE中点,只需证明DM⊥AE即可;
(2)欲证平面BDM⊥平面AEC,根据面面垂直的判定定理可知在平面BDM内一直线与平面AEC垂直,而根据题意可得DM⊥平面AEC.
解答:证明:(1)取AC中点N,连接MN、BN,
∵△ABC是正三角形,
∴BN⊥AC,
∵EC⊥平面ABC,BD⊥平面ABC,
∴EC∥BD,EC⊥BN,
又∵M为AE中点,EC=2BD,
∴MN
.
.
BD,∴BN
.
.
DM,
∴四边形MNBD是平行四边形,
因为BN⊥AC,BN⊥EC,
所以BN⊥平面AEC,
∴DM⊥平面AEC,
∴DM⊥AE,
∴AD=DE.
(2)∵DM⊥平面AEC,DM?平面BDM,
∴平面BDM⊥平面AEC.
点评:本小题主要考查平面与平面垂直的判定,以及等腰三角形的判定等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年聊城市三模)(12分)   如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.

   (I)证明:DM∥平面ABC;

   (II)证明:CM⊥DE;

   (III)求平面ADE与平面ABC所成的二面角的大小(只考虑锐角情况).

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC为直角三角形,∠C=90°,若 =(0,-4),M在轴上,且AM=,点C在轴上移动.

 

(Ⅰ)求点B的轨迹E的方程;  

(Ⅱ)过点F(0,)的直线与曲线E交于P、Q两点,设N(0,)(<0),的夹角为,若等恒成立,求的取值范围;

(Ⅲ)设以点N为圆心,以半径的圆与曲线E在第一象限的交点为H,若圆在点H处的切线与曲线E在点H处的切线互相垂直,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC为正三角形,EC⊥平面ABC,BDCE,且CE=CA=2BD,MEA中点.

求证:(1)DE=DA;

(2)平面MBD⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC为正三角形,CE⊥平面ABCBDCE,且CEAC=2BDMAE的中点.

(1)求证:DEDA

(2)求证:平面BDM⊥平面ECA

(3)求证:平面DEA⊥平面ECA.

查看答案和解析>>

同步练习册答案