精英家教网 > 高中数学 > 题目详情
已知x∈Q时,f(x)=1;x为无理数时,f(x)=0;我们知道函数表示法有三种:①列表法,②图象法,③解析法,那么该函数y=f(x)不能用
①②
①②
表示.
分析:根据数集Q和无理数的元素构成,结合函数的表示方法进行判断.
解答:解:∵Q和无理数的元素无法具体表示,
∴①列表法,②图象法,都无法建立x和y之间的对应关系,
∴不能表示函数y=f(x).
③利用解析法表示为f(x)=
1,x∈Q
0.x为无理数

故答案为:①②.
点评:本题主要考查函数表示的三种方法的适用条件,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
3
x

(1)当x∈[
1
3
,3]
时,求f(x)的反函数g(x);
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
x2-1
+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象:
(1)写出g(x)的解析式
(2)记F(x)=f(x)+g(x),讨论F(x)的单调性
(3)若a>1,x∈[0,1)时,总有F(x)=f(x)+g(x)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆乌鲁木齐一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=loga(x+1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象:
(1)写出g(x)的解析式
(2)记F(x)=f(x)+g(x),讨论F(x)的单调性
(3)若a>1,x∈[0,1)时,总有F(x)=f(x)+g(x)≥m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案