精英家教网 > 高中数学 > 题目详情

【题目】已知为锐角的外心,且三边与面积满足,若(其中是实数),则的最大值是(

A.B.C.D.

【答案】D

【解析】

利用余弦定理以及三角形的面积公式求出,以边所在的直线为轴,边的垂直平分线为轴建立直角坐标系(边的中点),由外接圆的性质可得,,不妨设外接圆的半径,则,可得的坐标,设,则的外接圆的方程为:,利用向量的坐标运算可得,从而求出,代入外接圆方程可得,再利用基本不等式即可求解.

,可知

解得,所以

如图所示,以边所在的直线为轴,边的垂直平分线为轴建立直角坐标系

边的中点)

由外接圆的性质可得,

,不妨设外接圆的半径

,

,

的外接圆的方程为:

,否则三点共线,由图可知不可能的.

可化为,代入的外接圆的方程可得

化为

化为

解得

,所以

所以的最大值为.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明:

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在的偶函数,且.时,,若方程300个不同的实数根,则实数m的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数(其中a是实数).

(1)求的单调区间;

(2)若设,且有两个极值点 ,求取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且中点.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为配合“2019双十二促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40455461,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则(

A.最少需要16次调动,有2种可行方案

B.最少需要15次调动,有1种可行方案

C.最少需要16次调动,有1种可行方案

D.最少需要15次调动,有2种可行方案

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点上,且

1)证明:平面

2)求楔面与侧面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校某年级学生的阅读量(分钟),随机抽取了n名学生,调查他们一天的阅读时间,统计结果下图表所示:

组号

分组

男生

人数

男生人数占本

组人数的频率

频率分布直方图

1

5

0.5

2

18

0.9

3

24

0.8

4

0.4

5

3

0.2

1)求出的值;

2天的阅时间不少于35分钟称为喜好阅读者”.根据以上数据,完成下面的列联表,并回答能否在犯错误的概率不超过0.05的前提下认为喜好阅读者性别有关?

喜好阅读者

非喜好阅读者

合计

男生

女生

合计

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案