精英家教网 > 高中数学 > 题目详情
已知 函数
(I)当a=1时,求f(x)最小值;
(II)求f(x)的最小值g(a);
(III)若关于a的函数g(a)在定义域[2,10]上满足g(-2a+9)<g(a+1),求实数a的取值范围.
【答案】分析:(I)根据所给分段函数的解析式,根据基本初等函数的性质和图象的变换看出函数的图象的变换趋势,得到结果.
(II)要求分段函数的最小值,把两端函数进行比较,解不等式写出函数在不同的情况下最小值不同,分段写出.
(III)要解抽象不等式,写出不等式相当于函数的自变量之间的不等关系,写出函数的自变量的取值,就不等式组得到结果.
解答:解:(I)当a=1时,
当x≥1时,函数先减后增,当x<1时,函数是一个是一个减函数,
∴最小值f(2)=1;
(II)当2|x-2|>2|x-10|时,|x-2|>|x-10|
∴6<x<10,即g(a)=2|a-10|
当2|x-2|<2|x-10|时,
2≤a≤6,即g(a)=2|a-2|
当a≤2,a≥10时,g(a)=1
综上可知g(a)=2|a-10|,6<x<10,
g(a)=2|a-2|   2≤a≤6,
g(a)=1,a≤2,a≥10
(III)∵g(-2a+9)<g(a+1),
∴2<-2a+9<10,①
2<a+1<10,②
|a-5|<|-2a+3|③
∴-
1<a<9
(3a-8)(a+2)>0,即a>或a<-2
总上可知a∈φ
点评:本题考查分段函数的最值和抽象不等式的解法,本题解题的关键是看出分段函数的单调性和所过的特殊点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

   (I)当a=1时,求在区间[1,e]的最大值和最小值;

   (II)若在区间上,函数的图象总在直线的下方,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2003-2004学年北京市丰台区高一(下)期末数学试卷(解析版) 题型:解答题

已知函数
(I)当180°<x<360°时,化简函数f(x)的表达式;
(II)写出函数f(x)的一条对称轴.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市西城区高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数
(I)当a=2时,求曲线y=f(x)在点(2,f(2))处切线的斜率;
(II)当a>0时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2006年重庆市高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(I)当a=1时,求函数f (x)的单调递增区间;
(Ⅱ)当a<0且x∈[0,π]时,函数f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

同步练习册答案