精英家教网 > 高中数学 > 题目详情

【题目】命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为;命题q:函数f(x)=(4a2+7a﹣1)x是增函数,若¬p∧q为真,求实数a的取值范围.

【答案】解:p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为

则△=(a﹣1)2﹣4a2<0,

a<﹣1或

q:a<﹣2或

若p∧q为真,则p真且q真,


【解析】根据条件取出命题p和q为真命题的等价条件,结合复合命题¬p∧q为真命题,得到p假q真,然后进行求解即可.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.

(1)求证: 平面

(2)设的中点, 的重心,求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是

用宽(单位)表示所建造的每间熊猫居室的面积(单位);

怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)若直线与圆交于不同的两点,当时,求的值;

(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点?若过定点则求出该定点,若不存在则说明理由;

(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)解关于的不等式

(2)若函数在区间上的值域为,求实数的取值范围;

(3)设函数,求满足的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多

生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.

(1)求出利润函数p(x)及其边际利润函数Mp(x);

(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;

(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙是边长为的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积).

(1)将你的裁剪方法用虚线标示在图中,并作简要说明;

(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

同步练习册答案