精英家教网 > 高中数学 > 题目详情
n∈{1,2,-1,
12
}
时,幂函数y=xn的图象不可能经过第
 
象限.
分析:因为x>0时,xn>0,故幂函数y=xn的图象不可能经过第 四象限.
解答:解:由指数幂的性质,当x>0时,xn>0,故幂函数y=xn的图象不可能经过第 四象限.
故答案为:四
点评:本题考查幂函数的图象、指数幂的性质,属基础知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a≠0,a2≠a1,当n∈N*时,an+1=f(an),且存在非零常数k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若数列{an}是等差数列,求k的值;
(2)求证:数列{an}为等比数列的充要条件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),数列{bn}的前n项是Sn,对于给定常数m,若
S(m+1)nSmn
的值是一个与n无关的量,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,当n≥1时,Sn+1是an+1与Sn+1+2的等比中项.
(Ⅰ)求证:当n≥1时,
1
Sn
-
1
Sn+1
=
1
2

(Ⅱ)设a1=-1,求Sn的表达式;
(Ⅲ)设a1=-1,且{
n
(pn+q)Sn
}
是等差数列(pq≠0),求证:
p
q
是常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)对于数列{an} (n=1,2,…,m),令bk为a1,a2,…,ak中的最大值,称数列{bn}为{an}的“创新数列”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7.定义数列{Cn}:c1,c2,c3,…,cm是自然数1,2,3,…,m(m>3)的一个排列.
(Ⅰ)当m=5时,写出创新数列为3,4,4,5,5的所有数列{Cn};
(Ⅱ)是否存在数列{Cn},使它的创新数列为等差数列?若存在,求出所有的数列{Cn},若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:解答题

对于数列{an} (n=1,2,…,m),令bk为a1,a2,…,ak中的最大值,称数列{bn}为{an}的“创新数列”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7.定义数列{Cn}:c1,c2,c3,…,cm是自然数1,2,3,…,m(m>3)的一个排列.
(Ⅰ)当m=5时,写出创新数列为3,4,4,5,5的所有数列{Cn};
(Ⅱ)是否存在数列{Cn},使它的创新数列为等差数列?若存在,求出所有的数列{Cn},若不存在,请说明理由.

查看答案和解析>>

同步练习册答案