【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请按字母F、G、H标记在正方体相应地顶点处(不需要说明理由);
(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;
(3)证明:直线DF⊥平面BEG.
【答案】(1)见解析;(2)平面BEG∥平面ACH;(3)证明见解析
【解析】试题分析:(1)折叠成正方体即可得出;(2)根据条件可证四边形BCEH为平行四边形,因此BE∥CH,由线面平行判定定理即可得证;(3)根据DH⊥平面EFGH可得DH⊥EG,又EG⊥FH,可证EG⊥平面BFHD,所以DF⊥EG,同理可证同理DF⊥BG,所以命题得证.
试题解析:
(1)点F、G、H的位置如图所示.
(2)平面BEC∥平面ACH.证明如下:
因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,
又FG∥EH,FG=EH,所以BC∥EH,BC=EH,
于是四边形BCEH为平行四边形,
所以BE∥CH,
又CH平面ACH,BE平面ACH,
所以BE∥平面ACH,
同理,BG∥平面ACH,
又BE∩BG=B,
所以平面BEG∥平面ACH.
(3)连接FH交EG于点O,连接BD.
因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,
因为EG平面EFGH,所以DH⊥EG,
又EG⊥FH,EG∩FH=O,
所以EG⊥平面BFHD,
又DF平面BFHD,所以DF⊥EG,
同理DF⊥BG,
又EG∩BG=G,
所以DF⊥平面BEG.
科目:高中数学 来源: 题型:
【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆恒过点,且与直线: 相切.
(1)求动圆圆心的轨迹的方程;
(2)探究在曲线上,是否存在异于原点的两点, ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若,则称为的“不动点”;若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.
()设函数,求集合和.
()求证:.
()设函数,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分
布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。
(1)求居民月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的命题个数是 ( )
①. 如果共面, 也共面,则共面;
②.已知直线a的方向向量与平面,若// ,则直线a// ;
③若共面,则存在唯一实数使,反之也成立;
④.对空间任意点O与不共线的三点A、B、C,若=x+y+z
(其中x、y、z∈R),则P、A、B、C四点共面
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com