精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是[$\frac{8}{3}$,4).

分析 当x>1时f(x)=ax单调递增,当x≤1时f(x)=(2-$\frac{a}{2}$)x+2单调递增,且(2-$\frac{a}{2}$)×1+2≤a1,由此能求出实数a取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函数,
∴当x>1时f(x)=ax单调递增,则a>1①;
当x≤1时f(x)=(2-$\frac{a}{2}$)x+2单调递增,
则2-$\frac{a}{2}$>0,解得a<4,②;
且(2-$\frac{a}{2}$)×1+2≤a1,解得a≥$\frac{8}{3}$,③.
综合①②③,得实数a取值范围是[$\frac{8}{3}$,4).
故答案为:[$\frac{8}{3}$,4].

点评 本题考查实数值的取值范围的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.$tan(-\frac{7π}{6})$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如表:
步数(千卡)16171819
消耗能量(卡路里)400440480520
(1)求李老师这8天“健步走”步数的平均数;
(2)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求异面直线AC与B1D所成角的余弦值;
(Ⅱ)设M是线段B1D上一点,在长方体ABCD-A1B1C1D1内随机选取一点,若该点取自于三棱锥M-ACD内的概率为$\frac{1}{18}$,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)的值为(  )
A.2-mB.4C.2mD.-m+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x|x-a|
(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;
(2)若对任意x∈[1,2]时,函数f(x)的图象恒在y=1图象的下方,求实数a的取值范围;
(3)设a≥2时,求f(x)在区间[2,4]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A={x|2x>1},B={x|log3(x+1)<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,则f(x)+g(x)=1+$\sqrt{1-x}$,0≤x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=$\frac{{2}^{x+1}}{{2}^{x}+1}$与函数y=$\frac{x+1}{x}$的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),则$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

同步练习册答案