精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
x+1
,若数列{an}满足:an>0,a1=1,an+1=[f(
an
)]2
(I)求数列{an}的通项公式数列an
(II)若数列{an}的前n项和为Sn,证明:Sn<2.
分析:(Ⅰ)由题意有an+1=(
an
an
+1
)2
an+1
=
an
an
+1
,故
1
an+1
-
1
an
=1
.所以
1
an
=1+(n-1)=n
,由此能求出an=
1
n2

(Ⅱ)当k≥2(k=2,3,4,…,n)时,ak=
1
k2
1
k(k-1)
=
1
k-1
-
1
k
,由此利用裂项求和法能够证明Sn<2.
解答:(Ⅰ)解:由题意有an+1=(
an
an
+1
)2

an+1
=
an
an
+1
,(2分)
1
an+1
=
1
an
+1

1
an+1
-
1
an
=1
.(4分)
所以数列{
1
an
}是以1为首项,1为公差的等差数列.(5分)
1
an
=1+(n-1)=n

an
=
1
n

所以an=
1
n2
.(7分)
(Ⅱ)证明:当k≥2(k=2,3,4,…,n)时,
ak=
1
k2
1
k(k-1)
=
1
k-1
-
1
k
,(10分)Sn=a1+a2+…+an=1+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)=2-
1
n
<2
,(13分)
故 Sn<2.(14分)
点评:本题考查数列与函数的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案