精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若的极值点,求上的最大值;
(2)若函数上的单调递增函数,求实数的取值范围.

(1)上的最大值为15;
(2)实数的取值范围为:.

解析试题分析:(1)先对函数求导,再把代入导函数使之为0,即解得的值,进一步可求;令导函数为0,列表可求上的最大值;(2)函数上的单调递增函数可转化为在R上恒成立,即可求出实数的取值范围.
试题解析:(1),令,即.
                    4分
,解得(舍去).
变化时,,的变化情况如下表:

  
1
(1,3)
3
   (3,5)
5
 
 
 
0
+
 
 
 1
单调递减↘
 9
单调递增↗
15
因此,当时,在区间[1,5]上有最大值是.      8分
(2) 是R上的单调递增函数转化为在R上恒成立,   10分
从而有,由,解得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,(>0,,以点为切点作函数图象的切线,记函数图象与三条直线所围成的区域面积为
(1)求
(2)求证:
(3)设为数列的前项和,求证:.来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx+ax(a∈R).
(1)求f(x)的单调区间;
(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln ax (a≠0).
(1)求函数f(x)的单调区间及最值;
(2)求证:对于任意正整数n,均有1+(e为自然对数的底数);
(3)当a=1时,是否存在过点(1,-1)的直线与函数yf(x)的图象相切?若存在,有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=a(x-5)2+6ln x,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知图像过点,且在处的切线方程是.
(1)求的解析式;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案