精英家教网 > 高中数学 > 题目详情

(本题满分14分)

如图,已知正三棱柱的底面边长是是侧棱的中点,直线与侧面所成的角为

     (Ⅰ)求此正三棱柱的侧棱长;

(Ⅱ) 求二面角的大小;

(Ⅲ)求点到平面的距离.

(本小题满分14分)

解:(Ⅰ)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面

,则直线与侧面所成的角为.   ……………2分

中,,解得.       …………3分

此正三棱柱的侧棱长为.                         ……………………4分

 注:也可用向量法求侧棱长.

(Ⅱ)解法1:过,连

侧面

为二面角的平面角.           ……………………………6分

中,,又

, 

中,.               …………………………8分

故二面角的大小为.               …………………………9分

解法2:(向量法,见后)

(Ⅲ)解法1:由(Ⅱ)可知,平面,平面平面,且交线为,则平面.                      …………10分

中,.         …………12分

中点,到平面的距离为.       …………14分

解法2:(思路)取中点,连,由,易得平面平面,且交线为.过点,则的长为点到平面的距离.

解法3:(思路)等体积变换:由可求.

解法4:(向量法,见后)

题(Ⅱ)、(Ⅲ)的向量解法:

(Ⅱ)解法2:如图,建立空间直角坐标系

为平面的法向量.

                                       …………6分

又平面的一个法向量                          …………7分

.   …………8分

结合图形可知,二面角的大小为.         …………9分

(Ⅲ)解法4:由(Ⅱ)解法2,…………10分

到平面的距离.14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案